Experimental modeling of recombinant tissue plasminogen activator effects after ischemic stroke.
Auteur : El Amki M, Lerouet D, Coqueran B, Curis E, Orset C, Vivien D, Plotkine M, Marchand-Leroux C, Margaill I
Année : 2012
Journal : Exp Neurol 1090-2430
PubMed Id : 22921458
Recombinant tissue plasminogen activator (rt-PA) is currently the only approved drug for ischemic stroke treatment, with a dose of 0.9 mg/kg. Since the fibrinolytic activity of rt-PA has been reported in vitro to be 10-fold less potent in rodent than in human, in most in vivo experimental models of cerebral ischemia rt-PA is used at 10 mg/kg. The purpose of this study was to compare the effects of the "human" (0.9 mg/kg) and "rodent" (10 mg/kg) doses of rt-PA given at an early or a delayed time point in a mouse model of cerebral ischemia. Cerebral ischemia was induced by thrombin injection into the left middle cerebral artery of mice. Rt-PA (0.9 or 10 mg/kg) was intravenously administered 30 min or 4 h after the onset of ischemia. The degree of reperfusion after rt-PA was followed for 90 min after its injection. The neurological deficit, infarct volumes, edema and hemorrhagic transformations (HT) were assessed at 24 h. Reperfusion was complete after early administration of rt-PA at 10 mg/kg but partial with rt-PA at 0.9 mg/kg. Both doses given at 4 h induced partial reperfusion. Early administration of both doses of rt-PA reduced the neurological deficit, lesion volume and brain edema, without modifying post-ischemic HT. Injected at 4 h, rt-PA at 0.9 and 10 mg/kg lost its beneficial effects and worsened HT. In conclusion, in the mouse thrombin stroke model, the "human" dose of rt-PA exhibits effects close to those observed in clinic.