Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis.
Auteur : Docagne F, Nicole O, Gabriel C, Fernández-Monreal M, Lesné S, Ali C, Plawinski L, Carmeliet P, MacKenzie ET, Buisson A, Vivien D
Année : 2002
Journal : Mol Cell Neurosci 1044-7431
PubMed Id : 12504596
The intravenous injection of the serine protease, tissue-type plasminogen activator (t-PA), has shown to benefit stroke patients by promoting early reperfusion. However, it has recently been suggested that t-PA activity, in the cerebral parenchyma, may also potentiate excitotoxic neuronal death. The present study has dealt with the role of the t-PA inhibitor, PAI-1, in the neuroprotective activity of the cytokine TGF-beta1 and focused on the transduction pathway involved in this effect. We demonstrated that PAI-1, produced by astrocytes, mediates the neuroprotective activity of TGF-beta 1 against N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. This t-PA inhibitor, PAI-1, protected neurons against NMDA-induced neuronal death by modulating the NMDA-evoked calcium influx. Finally, we showed that the activation of the Smad3-dependent transduction pathway mediates the TGF-beta-induced up-regulation of PAI-1 and subsequent neuroprotection. Overall, this study underlines the critical role of the t-PA/PAI-1 axis in the regulation of glutamatergic neurotransmission.