Neonatal cerebral hypoxia-ischemia in mice triggers age-dependent vascular effects and disabilities in adults; implication of tissue plasminogen activator (tPA).
Auteur : Dupré N, Arabo A, Orset C, Maucotel J, Detroussel Y, Hauchecorne M, Gonzalez BJ, Marret S, Vivien D, Leroux P
Année : 2020
Journal : Exp Neurol 1090-2430
PubMed Id : 31697944
Neonatal encephalopathy frequently results from hypoxia-ischemia (HI) or inflammation in preterm or term neonates. Neuropathology depends on cerebral development at insult time, but the poor correlation of neuromotor, cognitive, and behavioral disabilities in infancy with initial imaging and clinical records precludes early prognosis. The Rice-Vannucci HI procedure was applied to wild type and tissue plasminogen activator knockout (tPA-KO) mice as surrogates for human preterm (with five-day-old postnatal (P5) mice) or human term (with ten-day-old postnatal (P10) mice). Acute and delayed T2-magnetic resonance imaging (T2-MRI) signals and cognitive deficits in adulthood (spatial memory and social interaction) were investigated in the same animals. Early vascular tPA and matrix metalloproteinase-9 (MMP-9) activities, blood-brain barrier permeability to water or IgG, and microglial activation were assessed separately. HI in P5 or P10 mice induced early hemisphere swelling in T2-MRI scans, and a delayed atrophy of the cortex and hippocampus, but affected white matter in the P5 group only, irrespective of the wild type or tPA-KO genotype. Adults had no motor disabilities, but we did find HI-induced age-dependent deficits, preferentially social interaction and activity in P5 mice, and spatial learning in P10 mice. In P5 mice, tPA-KO prevented MMP-9 activation, IgG extravasation, microglial activation, and behavior impairments. In P10 mice, MMP-9 activation and inflammatory processes remained in the hippocampus of the tPA-KO group, and also contributed to persistent spatial learning deficits. Perinatal HI in mice mimicked the unpredictability of outcomes from imaging in human clinics. Delayed deficits appeared associated to vascular dysfunction-induced inflammation, which recalls our previous work showing major vascular maturation between P5 and P10 stages. Using omics to explore neural, glial, or brain vessel markers in neonate blood may be a promising perspective to identify pertinent prognostic tools.